https://ogma.newcastle.edu.au/vital/access/ /manager/Index ${session.getAttribute("locale")} 5 Infall signatures in a prestellar core embedded in the high-mass 70 μm Dark IRDC G331.372-00.116 https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:34952 ⊙), cold (14 K) 3.6–70 μm dark IRDC, G331.372-00.116. This infrared dark cloud (IRDC) has the potential to form high-mass stars, and given the absence of current star formation signatures, it seems to represent the earliest stages of high-mass star formation. We have mapped the whole IRDC with the Atacama Large Millimeter/submillimeter Array (ALMA) at 1.1 and 1.3 mm in dust continuum and line emission. The dust continuum reveals 22 cores distributed across the IRDC. In this work, we analyze the physical properties of the most massive core, ALMA1, which has no molecular outflows detected in the CO (2–1), SiO (5–4), and H₂CO (3–2) lines. This core is relatively massive (M = 17.6 M ), subvirialized (virial parameter α vir = Mvir/M = 0.14), and is barely affected by turbulence (transonic Mach number of 1.2). Using the HCO+ (3–2) line, we find the first detection of infall signatures in a relatively massive, prestellar core (ALMA1) with the potential to form a high-mass star. We estimate an infall speed of 1.54 km s−1 and a high accretion rate of 1.96 × 10−3 M yr−1. ALMA1 is rapidly collapsing, out of virial equilibrium, which is more consistent with competitive accretion scenarios rather than the turbulent core accretion model. On the other hand, ALMA1 has a mass ~6 times larger than the clumps Jeans mass, as it is in an intermediate mass regime (MJ = 2.7 ⊙), contrary to what both the competitive accretion and turbulent core accretion theories predict.]]> Tue 03 Sep 2019 17:56:50 AEST ]]> The ALMA Survey of 70 μm Dark High-mass Clumps in Early Stages (ASHES). VII. Chemistry of Embedded Dense Cores https://ogma.newcastle.edu.au/vital/access/ /manager/Repository/uon:52118 45 K). The detection rate of the N2D+ emission toward the protostellar cores is 38%, which is higher than 9% for the prestellar cores, indicating that N2D+ does not exclusively trace prestellar cores. The detection rates of the DCO+ emission are 35% for the prestellar cores and 49% for the protostellar cores, which are higher than those for N2D+, implying that DCO+ appears more frequently than N2D+ in both prestellar and protostellar cores. Both the N2D+ and DCO+ abundances appear to decrease from the prestellar to the protostellar stage. The DCN, C2D, and 13CS emission lines are rarely seen in the dense cores of early evolutionary phases. The detection rate of the H2CO emission toward dense cores is 52%, three times higher than that for CH3OH (17%). In addition, the H2CO detection rate, abundance, line intensities, and line widths increase with the core evolutionary status, suggesting that the H2CO line emission is sensitive to protostellar activity.]]> Thu 28 Sep 2023 15:04:02 AEST ]]>